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By Rosert G. THomsox and EpwiNn T. KRUSZEWSKI

SUMMARY

A theoretical flutter analysis has been made that
utilizes the same simplified model employed in the
vibrational investigation presented in TN [D-987 in
which chordwise and spanwise flexibilities of the
actual wing are duplicated. This idealized model
subjected to a supersonic flow 1s investigated to
predict the flutter behavior and establish a flutter
boundary. Additional effects such as aerodynamic
damping and variations in cross-sectional curvature
are determined and their effect on the predicted
Slutter boundary ascertained. A comparison of the
predicted  flutter boundary with results obtained
experimentally for multiweb wing structures shows
rery good agreement.

INTRODUCTION

In an experimental investigation conducted by
the Langley Structures Research Division into the
dynamic flutter failures of multiweb wing struc-
tures, chordwise or camber flutter was found to be
a primary mode of failure when insufficient bulk-
heads were used. This flutter consisted of small-
amplitude oscillations with five or less spanwise
node lines across the chord. In the investigation a
series of multiweb wing structures were tested in
the preflight jet of the NASA Wallops Station at a
Mach number of 2 as discussed in references 1, 2,
and 3. Additional tests have also been made in
the Langley 9- by 6-foot thermal structures tunnel
at a Mach number of 3, and these flutter data are
included also. These multiweb models had
5-percent-thick circular-arc airfoil sections con-
{aining six webs and a solid leading and trailing
edge. In atteupts to predict this flutter behavior
theoretically, modal approaches using the lowest
five experimental mode shapes have not been very
successful.  Vibration behavior of such structures,

however, has been successfully predicted theo-
retically (for example, ref. 4) by the use of an
analysis of a simplified model which took cogni-
zance of the cross-sectional flexibilities. Hence,
the same idealized model subjected to a supersonic
flow has been investigated in an attempt to obtain
a method of predicting the flutter behavior of the
multiweb wings. D. J. Johns, in a note on the
influence of panel deformations on wing flutter
(ref. 5), also recognized the significance of cou-
pling between cross-sectional and spanwise defor-
mation modes. This analysis, however, was
applicable only to wings with rectangular cross
sections and consequently did not include any
effects of curvature of the cross section.

The purpose of the present paper is to present
the results of a flutter analysis of the idealized
structure and to show how these results can be
used to predict the flutter behavior of multiweb
and monocoque low-aspect-ratio wings of circular-
arc cross section.  The idealized structure consists
of a typical cross section of the wing mounted
on springs and hence embodies the prineipal
mechanisms of the cross-sectional and spanwise
flexibilities of the actual wing. A modified linear
piston theory is used to represent the aerodynamic
forces created by supersonic flow. The analysis
consists in solving the basic equations by means of
a Galerkin procedure using a modal approximation
of three and four terms but neglecting the effect of
aerodynamic damping. The accuracy of this
Galerkin procedure is determined in two ways —
first, by the apparent convergence of the results
of the three- and four-term solutions and second,
by a comparison of the flutter boundaries for the
case of the idealized structure with infinitely stiff
spring supports (pin-ended) at the leading and
trailing edges as caleulated by the Galerkin method
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with those obtained from an exact analysis. In
addition, the effects of damping are evaluated by a
two-mode Galerkin solution that includes the
effects of aerodynamic damping. Finally, the
results of the anulysis are used to predict suc-
cessfully the flutter boundary of the multiweb
wings used in the experimental investigations,

SYMBOLS

3 ct . 1/4
B=(3 gy o)

¢ chord length of beam
r modulus of elasticity
h distance from r-axis to median line of
skin
hg value of A at +x=0
I arca moment of inertia about median
line of skin, per unit length, 3/12
I, area polar moment of inertia per unit
length, 7.+ 1,
B integers
k spring constant
M Mach number
m roots of auxiliary equation (see ap-
pendix)
. 1 -
q dynamic pressure, 9 Pl 2
t skin thickness
., free-stream velocity
w amplitude of deflection in z-direction
(positive upward)
w deflection in z-direction, Re(we?e?)
r, N, 2 Cartesian coordinates (fig. 1)
i T eIptwt\1
a frequency coeflicient, (ﬁlﬁ)
B=- M*—1
v,6,0,¢ assumed cocflicients of the roots of
the exact equation (see eqs. (A9) of
appendix)
\ dynamic-pres L3 ey
. A pressure parameter, o (t>
Ao eritical value of A )
A amplitude of normal midplane force
_ in the beam (positive in tension)
by normal midplane foree, Re(ae'«r)
K Poisson’s ratio
2r
E=>
p mass density of cover
Pu mass density of air (free stream)
T time
Y= 1

AERONAUTICS AND SPACE ADMINISTRATION

w natural frequency

Subseripts:

A antisymmediriecal

i, mn any integer

S symmetrical

T torsional

r, ¥, 2, 7 variable with respect to which primary

symbol is differentiated
Primes and superscript 1V on symbols denote dif-
ferentiation with respect to £.

ANALYSIS
IDEALIZED STRUCTURE

A rigorous approach to the flutter analysis of the
multiweb wing shown in figure 1(a) would, of
necessity, involve some type of shell analysis and
sophisticated aecrodynamics. A nore convenient
though less rigorous approach is to investigate an
idealized structure identieal to that used in the
vibration analysis of reference 4. The only struc-
tures considered are those that have relutively uni-
form properties i the spanwise direction with a
doubly symmetrical curved airfoil eross section as
shown in figure 1(a). The wing or beam is as-
sumed to be of either pure monocoque or multiweb
cross section with no or relatively few internal ribs.

The idealized structure consists of a typical cross
section of the wing mounted on identical elastic
supports as shown in figure 1(b). The cross sec-
tion consists of two ecurved uniform beams at-
tached at the ends in such a manner as to maintain
the angle between the beams at each end. The
rigid-body motion of the idealized structure de-
pends on the stiffness of the elastic supports which
simulate the beam bending and torsional stiflness
of the wing. The depth of the individual beams
in the idealized structure is tuken to be the same
as the thickness f of the covers in the prototype.
The curvature of the covers of the wings consid-
ered is such as can be represented by the para-
bolic equation h=he(1—£&%) where hy is the maxic
mum value of & and ¢ is the nondimensional co-
ordinate 2r/c.

The webs of the multiweb structure are assumed
to contribute nothing to the camber siiffness.
They do, however, tend to prevent any relative
motion between the top and bottom covers. Thus,
the additional assumption is made that the deflec-
tions of the top and bottom beams in the idealized
structure are the same.  Each beam of the ideal-

ized structure is permitted to earry midplane forces
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Firavre 1.- -Low-aspeet-ratio multiweb wing.

in addition to transverse shear forces and bending
moments and is considered to be acting in a man-
ner consistent with elementary theory (i.e., plane
sections remain plane). The air loads to which
the idealized structure are subjected are taken as
those given by modified linear piston theory.

GOVERNING EQUATIONS

The appropriate differential  equation and
boundary conditions for the idealized structure
shown in figure 1(b} for the deflection & are

29— 24 -
3 W, i W, (1)

EIW 1i— N+ ply=—

== Wer

=0 (2)

r=—=

Wer 2o
T2

T —N—b| =0 (3)
2 T3

hS feved N 1 k

ElT—iot b =0 )

where
7, [ree-stream velocity
4 1 T 9
q dynamic pressure, '2,003[‘ o
8 compressibility factor, y7—1

and the subseripts r and 7 denote differentiation
with respect to x and 7. The midplane force x,
as in reference 4, was assumed constant over the
length of the beam (for any finite 7) and an inte-
gral expression for » was arrived at by the as-
sumption that no overall shortening or lengthening

of the beams was possible. Thus,
— FEt (e _
A= c r ht.dx (5)
o /2

Note that when @ is antisymmetrical, the inte-
grand of ecquation (5) is an antisymmetrical
function about the midchord (x=0); consequently,
its integral from —¢/2 to ¢/2 is zero and no mid-
plane forces are present.  This is not true for the
symmetrieal case.

The differential equation and associated houn-
dary conditions are similar to equations (9) to (13)
of reference 4 except that terms are included on
the right-hand side of equation (1) to represent
the air loads given by modified linear piston
theory (modified in the sense that 1/ is replaced
by 1/8). The first term on the right-hand side
of the modified-piston-theory equation (1) is a
static-loading term and the second an aero-
dynamic damping term. The solution of equa-
tion (1) can be written in the form

w=Re [w(x)e'*7] (6)
*=Re [re'eT] (7)

From equations (6) and (7) it can be seen that
stable motion is assured as long as the imaginary
part ol the frequency w is zero or positive. Hence,
the flutter boundary is defined as the lowest
value of ¢ at which the imaginary part of any w
Hecomes negative and thercfore in the ensuing
analysis only real values of w are considered.
Substituting equations (6) and (7) into equation
(1) and the associated boundary conditions, using

the parabolic equation h=ho(1—§) together
3
with /= 11‘5’ and nondimensionalizing yiclds
; OMige?
wV A+ Blw==— At (8

Lt
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’w”{f-l:w”!f=—!: (9)
rr Ghu)\c -
v 4 7 ( )w (10)

S 6’*92‘,‘“_ ()
v T 41« v

where the primes and the superscript IV denote

—0 (1)

. . . 2z .
differentiation with respect to 5:7, and A is a

dynamic-pressure paranieter defined as

BO e

A Trequency parameter B' is defined as

13 qct Iy
B= =5 FBL’*C o (13)
3¢t pw?
e
1B (14)

and

1 1 1

)\=L€:tf h’?b’({&:éﬁgh” (—510‘ —I—f 'w/l§>

c*J-1 ¢ . -1 J= )
(15)

EXACT SOLUTION

An exact solution to equation (1) in which aero-
dynamic damping has been neglected is obtained
in this section. The approach is similar to that
used in reference 6, which presents an exact solu-
tion for panel flutter of a simply supported plate.
Although solutions of the flutter of the idealized
siructure considered in this section are possible or
any value of spring constant £, only the special
case of infinite k is presented. This approach re-
sults in considerable simplification in boundary
conditions and consequent numerical procedures;
for example, the solutions are not dependent on
values of ¢/t or £, Although considerably simpli-
fied, the solution still provides a means of evalu-
ating the effect of curvature and ijts associated
normal midplane force N on {lutter behavior.
These are the principal effects that distinguish the
present analysis from typical wing-flutter or panel-
flutter studies. Il no initial curvature is present
as in the case of a straight beam, Ay is considered
zero and consequently M is zero, and the differential

equation and boundary conditions are identical to
that given in refcrence 7 for an infinite-aspect-

rutio plate (with the exception of a factor of l_~]u2
resulting from the use ol the plate stiffness /7 in
the panel analysis and E7 in the beam analysis).

It the aerodynamic damping is neglected, the
last term in equation (1) is omitted and the ex-
pression for B! given by equation (13) reduces to
—o*  The solution to this differential equation
and boundary conditions is discussed in the ap-
pendix.  In the appendix it is shown that the de-
flection w can be written as

2
:iﬁ‘%‘,’; +e¥((; cosh ¢+ C; sinh ¢y)

Fe7W((, cos Y+ Cysin dy)  (16)

where the relations between ¢, 8, o, and#are given
by the following cquations:

A

F=—t—i (17)
A
=6 (18)
\2
T e (19)
Tn addition
\m
(20)
I¢I>!91

Substitution of equation (16) into the boundary
conditions (eqs. (A4) and (A5)) results in the
characteristic equation presented in table 1.
Although as written in tuble I the determinant is

. t\?
a function of 8, ¢, 8, a, A, and (h—) » the parameters
FEQ

¢, 8, and & can in turn be written as functions of
8 and A, (See eqs. (17) to (19).) Consequently
the determinant can be considered as a function of

t\? .
only 4, A, and (}f)' For a given value of A and
ALY

d 2
(;) the appropriate value of 8 can be determined
KA Y

from the characteristic equation. The corre-
sponding value of « can then be computed from
cquation (19).
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[

TABLE I—FLUTTER DETERMINANT OF EXACT SOLUTION, WIIEN k= AND ARRODYNAMIC
DAMPING IS NEGLECTED

1+all ally
(0 + ) 209
e2? cosh 26— 1 ¢?® sinh 2¢
I, R
where
N 1
EHOR
LA8\ Ay
y , é .
e?® { cosh 2¢——§ sinh 2¢ ) —1
I = .
L (®
(%)
2 (sinh 2¢ ——d; cosh 2¢)+%
.= o
(%)
) & .
e % (fcus 264 «in 26)+l
M= 9
3
6 2
‘+(5>
o2 (—»-—sin 26——; cos 26)—{—2
I,=.

o)

Tn figure 2 a plot of the dynamie-pressure param-
cter A as a function of the frequency parameter a

2
is shown by the solid curves for (ltt ) =0. For
"0

discrete values of A an infinite set of values of «
is shown to exist. When A equals zero, the values
of « correspond to the natural vibration [requen-
cies determined in reference 4 for a monocoque
beam in a vacuum. As A increases from zero,
these natural frequencies change until a value of
A is reached in which two of the roots of « coalesce.
For values of A greater than this value two of the
values of « become complex and hence, as can be
seen from equation (14), w will be complex.  Since
w must remain real to give stable oscillatory mo-
tion, this value of A is the eritical value A, and
thus defines the flutter boundary. In figure 3,

2
A, is plotted as a function of (hf— from 0 to 0.25.
- AN . L
Note that <h ) for all practical configurations is
0.

much less than unity.  For example, in an extreme
case where the skin thickness is equal to hall the
value of ko, this ratio is only 0.25. Tn the more
practical type of construction of multiweb wings
such ns those presented in references 1, 2, and 3

1+afl; all,
(82— 82) — 208
¢ cos 26—1

¢~ sin 28]=0
i, |

H;=c?[(8? | ¢?) cosh 2¢420¢ sinh 2¢]

Hy—c[(8 -+ ¢?) sinh 2¢-+26¢ cosh 2]

IT; = 29[ (0 — %) cos 264266 sin 2]

I, ~e-28[(82— 8?) sin 26—265 cos 28]

A?
— — a4
=g —
200 e Y RS B S e
150 b—— 15 —1
—— Exoct
— — Four-term Galerkin
——- Three-term Golerkin
A IOOF—— e - -~
AL.,\
50 f-—-— 1
0 2 4 6 8 1o 12

a

FraorE 2.—Iffeet of dynamic-pressure parameter on pin-

2
ended (k= =) wing frequencies for (}f) =0,
0
(Y 3 (<’
TN\TEe) U T Es\L

2
the ratio </:> is in the range of 0.020. Con-
).

sequently, within the range of practical design of

. N\
multiweb and monocoque wings the ratio (h>
0
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Figure 3. Ffleet of variation in (,;) on A, for exact

solution, k==,

can be assumed to approach zero without appre-
cinbly affecting the value of A,,. Tor this reason
in the analysis performed by the Galerkin pro-
cedure in the next section, a constant value of

1\ . . . .
(Iz') =0 is used as this ussumption results in con-
“0

siderable simplificution in the numerieal computa-
tions. Although, as was previously discussed,

£\ . .
(l for all practical cases is much less than one,
to,

a unique situation occurs in the limiting case
where the two curved beams merge into a straight
beam. For this limiting case ky is assumed to be

12 . .
zero and (/f) ~»00 . [t can be shown that for this
Q.

case the differentinl equation and boundary con-
ditions (eqs. (1), (A4), and (A5)) limit to the
equations presented in reference 7 for the infinite-
aspect-ratio flat panel, The wvalue of A, for

1\ L . Ce . - .
<h =o is 37,96 and is indicated in figure 3 in
).

order to compare the effects of cross-sectional
curvature and its associated midplane forces with
flat-panel results containing no in-plane forces.
Comparing this value of A, with that caleulated

for (hf >-TO (A;,=—70.9) demonstrates that the
“ 0

existence of curvature can have appreciable effect
on the {lutter criterion. However, as can be seen
from figure 3, once the curvature is present, varia-
tions in the degree of curvature can have little
effeet on the final flutter boundary,

AERONAUTICS AND SPACE ADMINISTRATION

SOLUTIONS BY THE GALERKIN PROCEDURE

The previous solution, although exuct, was for
the special case of pin-ended constraint conditions
where k=w. Tn order to study the effect of
spanwise flexibility on the overall motion of the
idealized structure finite values of the elastic
supports must be used. Because of the resulting
complexity in the final determinant which occurs
in the case of an exact solution, a Galerkin pro-
cedure using a theoretical modal approach is used
to determine the flutter characteristics.  As was
done in the exact solution, the effects of aero-
dynamic damping are neglected.  The importance
of this effect is discussed in a subsequent section.

In order to perform a Galerkin solution by a
modal approach, the choice of modes to be applied
must satisfly both the geometric boundary con-
ditions and the natural boundary conditions.
Since the inclusion of the dynamic pressure g in
equation (1) does not alter the boundary condi-
tions assocluted with the elastic supports, the
mode shapes and frequencies of the vibrational
analysis of such structures derived in reference 4
are used in the Galerkin procedure. That is, the
deflection is represented by

j z
w:auw(.,s—{—i} W, sF 2 0, 4 (21)
n=1 m=0

where wy g, w,s and w, ;s are the symmetric
and antisymmetric vibration modes. Note that
the coeflicients ay, a,, and b,, can be complex but
Wo s, Was, and w, 4 are real, The nmode shapes
w, s and w, 4 and their associated frequency
equations have been derived in reference 4 for all
values of t/k,. Examination ol the ecquations
given in reference 4 shows that a significant sim-
plification results when /A, approaches zero.
Tnasmuch as the exact solution has shown that
this simplifying assumption would have no appre-
ciable effect on the resulting flutter boundary for
f=w, t/hy is assumed to be zero, whereas ¢/t
remains finite, The [requency equation for the
symmetrical case as obtained from reference 4 for

t\?
(fr(,) =0 becomes
20, s=1an a, s+lanh a, ¢ (22)

and the associnted mode shape is written as

cos a, st | cosh a,,.sg__2

23
c0Sa,s cosha,s (23)

Wy, s=
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where

R ?z 1/4
ans= (" i) (29

For the antisymmetrical modes, as was pre-
viously discussed, the midplane force N\ is zero,
and the differential equation of vibration simply
reduces to the clementary beam equation. Thus,
the characteristic or [requency equation can be
writlen as

l} m, AT - 31 7\
coth a,, a—cot ey, 4 _ f’»/: (c) 25)
26(,"‘ A 4Ealu, 4 \t

and the mode shape is

sin Ay, AE Sinll Ay, ;lg

W, A= : 26

A7 SN a4 | SINH @ 4 (26)
where

B §C4Pw?ni 174 )

W AT Ty o !

It can be shown by the use of the general mode

and

shapes given in reference 4 that regardless of the

value of <7L'>’ the natural vibration modes are
0,

orthogonal for all values of k. Consequently,
! . (n=0,1,2,...7)
wa sty lE=0 12
[smstemo e {200 )
(28)
! — (n‘:0,1,2,...j)
f_lw,hsu,,l,,;dg—() (m=01.2,...0) 29)

1 . (1=0,1,2,...1)
b o & — 5 y L1 &)
.f_lu”"“%"“’[* 0 @#m (m=0,1,2,...10)

30)

2
Note from equation (23) that for (;f—) =0, the
“0

tip deflections of the cross section in the sym-
metrical modes are zero and

1
f Wy, sdE=0 (n=1,2,...7) (31)

ro, I , n=1,2,...7)
.f—] wm,Awn,SdE_' f_lum,Awn, S(IE {(77'1:0, 1 2’ L. l) (32)

?

In addition, with the use of equations (23) and (26) the following relationships are obtained

1
f w2 (di=tan?a, s—tanh?a,s (n=0,1,2,...7) (33)
=1

! 4.5k
u’m A(]’E 2+60t2 A, 4’—C01h G, 4+Fw 4

(am A COth Ky, A 1>+Gl < ) ( """ a" S

1 80(4
oS
f Won, Au/n S’IE— "

am AT an

The first mode, w, s, associated with a, in equa-
tion (21) is the rigid-body translational mode
while w,, 4 consists of predominantly rigid-body
torsional or pitching motion; that is, motion of
the cross section as a rigid body mounted on
spring supports. The rigid-body torsional mode
is always the lowest of the antisymmetrical modes,
while the rigid-body translational mode is not
necessarily the lowest of the symmetric modes.

673380—63——2

(m=0,1,2,...10) (34)

am AT C(,,, ‘ian S

a,, g tan a,,_s>

4 4
O, A0y, 8

(m=0,1,2,...10)

(n=0,1,2,...7) (35)

(See rel. 4.) The rest of the modes associated
with «, and b, are predominantly cross sectional
in nature containing two or more nodal points,
By application of the Galerkin procedures and
use of the simplilying orthogonality relutions given
by equations (28) to (30) and equations (31) and

t\? .
32) for (h =0, a set of cquations for the
0,

cocfficients a, and &,, are found. The set of
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equations for the coeflicients a, and b, are:

{
(V(XG’ S——ai)(h; [‘ ‘U‘S. S']ELO
1

J -
1

p—— f

1 b
(afu, A 4a1)bm f fu—.?ll, 41(’%. + 4\ Z @, f
J =1 n=t

1 !
wl sdE—A Dby | w4 $lE--0
1 m=0 —1

AERONATUTICS AND SPACE ADMINISTRATION

R
(n=1,2,...7 (
{(mfﬂ,],‘z,...l) [ 36)
| , (m=0,1,2,...0
Wy AW ‘,,] —{ ’ 3 3 /
[ a0, 58 =1,2,...7) |

Tt ean be seen from equations (36) that (at Teast in the absence of aerodynamic damping) the rigid-body
symmetrical (translational) mode w, ¢ becomes uncoupled in the solution.  Furthermore, it can be
shown from equations (36) that il the expansion for w in equation (21) contains either all symmelric
or all antisymmetric modes, the resulting solutions do not yield an instability; hence, flutter occurs
only through the coupling of symmetric and intisymmetric modes.  For a nontrivial solution, the deter-

minant of the coefficients must be equal to zero.

Three-term solution.—TFor a three-term approximation in which the rigid-body torsional mode and
the first two cross-sectional modes are considered, the determinant of equations (36) reduces to

1
(o s—a') f W gl
« 1

1
Af W, 2 W, lE 0
=1

which upon expansion gives

A=

The variation of the frequency parameter o
for finite values of the dynamic-pressure parameter
A can be obtained from equation (38) by choosing
values of « and solving for A, Equation (38) also
is a function of the wing material 72, chord-
thickness ratio ¢ff, and the spring constant & as
can be seen from the values given for the integrals
(eqs. (33) to (35)). Tn figure 2 a plot of A as a
function ol « is shown for the three-term Galerkin
approximation (by the long-short dashed curves)

3 2
for ('%) =0 and k=, As in the case of the
ALY
exact solution the critical value of A is the lowest
value of A at which two of the frequeney param-
cters o coalesce,
The critical value of A, expressed in the form of

1 i
—A r wy, s TE —A f Wy, 4, STE
J-1 o —1

1
A f ‘lUL A?U;_ 5'[5 ((Xii. A*—a"‘:) f

1
(! s—a')(ad a—a') (ot s —a') f u? ol f
o =1 .
1 , 2 i T 1 N2 1 o
(a"—a]’__ﬂ(f ’ll'z,ﬂl’l,s(lf> r '11??,A(,f+(a4_aé,.1)( f 1’-‘1,,111«‘;’_3'”’5) f wg.;a’/f
o —1 J—1 1 Ao =1

w? g 0 =0 (37)
1

(et it [

’u% allE
1

LS

1 i
wh g [t
i J -1

- (38)

) TR/
the often used panel flutter parameter 2(—(16)

3\, . .
:('{— is shown plotted in figure 4 asa function
\{rer

of F, for an aluminum-alloy (£=10.6<X10% psi)
wing of chord length ¢ of 20 inches and a ratio ¢/t
of 312.5. This ratio ¢/t was chosen as it corre-
sponds to the ratio for the multiweb wings used
in the experimental investigations,  The effect of
varying ¢/¢ on the final flutter boundary will be
discussed in a forthcoming section. The region
above the computed curve represents the region
ol stability while the region below represents the
region where flutter will oceur.

In order to convert the abseissa in figure 4 to a
nondimensional form, the results of figure 4 were
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Figure -1 Variation of the flutter parameter, 7 with & for an aluminum-alloy wing (F --10.6<X 10° psi) with
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_C_ F@ 13 3 1,’3 )
A ( (Acr> (’lu =0

replotted as a function of the square of the
frequeney Tatio wrfw, g in figure 5. The [re-
quency wy is the rigid-body torsional or pitching
frequency of the idealized structure, whereas
w, s is the frequency of the first symmetrieal
camber mode. The uncoupling of the rigid-body
transverse mode w, s motivated the choice of w,
for use in the nondimensional {requency ratio.

Thus,
Ky
I’p
0)1 g) 1‘)r[C(| S 4rals<> (39)
Cpt
where
2
K= (40)
t.’i
I=r5 (41)

and the approximate polar moment ol inertia 7,

is given by

2

3
I,=I, === (42)

2

Note from the curves presented in figure 5 that
the torsional beam stiffness of the prototype as
represented by wr is relatively unimportant for
large values of wy and furthermore that flutter will

occur even when wy is infinile (throc—torm solution,
e O AL i :

- JB —0.3485). The reversal of the curve at
P

( )—2 1 (or k=145) for the three-term Galer-
w1, s

kin approximation is similar to that occurring in
other solutions that use three-mode approxima-
tions such as flat-panel modal solutions as shown

) >2.1 the

in reference 7. For wvalues of (
w1, 8.
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Figure 5. —Variation of the flutter pamm(‘ter,% (%ﬁ with (:7) for £ =10.610% psi aml%:31?_.:). (é) =0.
. j -1 u

critical flutter boundary s defined by the coales-
cence of the rigid-body torsional (first antisym-
metrical) and the first symmetrical chordwise

N2
- Wy -
mode while for (,L) <2.1 the first symmetrie
w8
and second antisymmetrical chordwise modes
2
a w .
coalesce,  (See fig. 6(a).) As ( T—') is [urther
Wy s

decreased, a point is reached at which the second
antisymmetric chordwise frequency becones equal
to the first symmetric chordwise frequency for
zero airflow; at this point it appears as though
flutter will occur at zero dynamic pressure. This
phenomenon is quite common in flutter investiga-
tions and is probably duc to the neglect of acro-
dynamic damping.

Four-term solution.—In order to investigate
the accuracy in the region of the curve reversal
and also the convergence of the three-term approx-
imation, a lour-term Galerkin solution was por-
formed. Tor a four-term approximation in which

the first two antisymmetrical chordwise modes
(one of which is predominantly rigid-body torsion)
and the first two symmetrical chordwise modes
(the rigid-body transverse mode having become
uncoupled in the solution) are considered, the
determinant of cquations (36) upon expansion
reduces to a quadratic in A% Solving for the
critical value of A by varying « results in two
peaks, the minimum peak being A,,.

The correlation hetween these approximate
solutions and the cxact solution for the specific
case of pin-ended constraint conditions and

2
(%) =0 is shown in figure 2. The agreement
-0

between the three- and four-term approximations
and the exact solution—is- excellent, the ecritical
flutter parameter being caleculated as 70.5 for
the three-term solution, 70.72 for the four-term
solution, and 70.9 for the exact solution. In lact,
the values of the curves as calculated Tor the first
coalescing modes are so close that the curves
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]

(a) Three-term Galerkin solution.

Figure 6.—Dynamic-pressure parameter A as a funection of a for various values of & with

Y g L3192
(hu) =0. 1-3]"

drawn through them cannot be easily distinguished
one from another. The difference between the
exact peaks and the approximate peaks becomes
evident only at the higher codlescing modes. This
agreement demonstrates the degree of excellence
in comparison between the approximate Galerkin
procedures and the exact solution for the special
case of infinite &,

For the case of finite k the rapid convergence of
the Galerkin procedures using only three and four
modes, as is shown in figures 4 and 5, indicated
that the inclusion of more terms in the approxi-
mate solution was not necessary in order to obtain

5, FE

—10.6 10° psi.

N ¢

accurate results.

Now that the accuracy of the Galerkin pro-
cedure has been evaluated it is of interest to
examine more closely the behavior of the partici-
pating modes in the vicinity of the curve reversals
shown in figures 4 and 5. TIn order to illustrate
the change in coalescing modes, A has been plotted
as a function of a for different values of k in
figure 6(a) for the three-term approximation and
in figure 6(b) for the four-term approximation.
By following the sequence of plots in figure 6(a)
for different values of & it can be seen that as the
value of & varies the magnitude and shape of the
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(1 Four-term Galerkin solution.

Fratre 6. —Concluded,

peak changes until different modes coalesce.  As
was previously discussed the reversal of the curve
for the three-term approximation was {o be
expected because of the cubie nature of the ex-
panded determinant, as was demonstrated in flat-
panel modal solutions.  (See ref, 7.)  The abrupt
change in the curve for the four-term approxima-

2
. . - [
tion shown in figure 5 oceurring at <— T——) =1.93
Wi, s

(k=133) is somewhat surprising, however. This
abrupt change for the four-term approximation is
due to the type of modal coalescence illustrated
in the sequence of plots in figure 6(b). In figure
6(b), as in figure 6(a), the variance in & causes a
change in the magnitude and shape of the two
peaks until different modes coalesce.  The coales-

2
W
cence al values of ( 7,) >1.93 occurs between
W5

the rigid-body torsional (first antisymmetrical)
and the first symmetrical chordwise mode, and
between second symmetrical and second anti-
symmetrical chordwise mode. When the value

of & decreases until :l<1 .93, then the rigid-body
1,8

torsional mode coalesces with the second sym-
metrical chordwise mode and beneath this curve
the second antisymmetrical and first symmetrical
chordwise modes coalesce, the smaller of these two
peaks yielding A, as always.

Effects of variation in chord-thickness ratio—
Tn the previous Gualerkin procedures the ratio of
the chord to the skin thickness ¢/t was held
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constant at 312.5, the value computed from the
physical characteristies of the multiweb wings
investigated in references 1 and 3.

In order to show the effect of variance in the

. . CtERNY?
ratio ¢/t on the flutter eriterion, values ol c( B)
¢

computed from the four-term approximation were
- . w 2 .

plotted as a [unction ol (;i) in figure 7 for three
values of ¢/t.  The values of ¢/t were taken as 500,
312.5, and 246.9, values consistent with practical
design considerations and within the limits of the
present idealization for monocoque and multiweb
wings. As can be scen from figure 7, very little
effect is noted in the flutter boundary caused by
variations n ¢/t

Effects of aerodynamic damping.—In both the
exact analysis and in the Galerkin approximations

acrodynamic damping has been neglected.  The
damping term was neglected in the exact analysis
in order that a simplified solution to the differen-
tial equation could be found.  For the Gualerkin
approximutions, however, the inclusion of the
acrodynamic damping term does not create any
difficulties.  Thus, the effect of aerodynamic
damping on the eritical flutter parameter has heen
investigated for the limiting conditions of pin-
ended (k=w) and free-free (k=0) constraints by
using a Galerkin modal approach.

A two-term Gualerkin approximation {which is
identieal to the three-term approximution at k=0)
was employed for the sake of simplicity, since the
choice of the proper coupling modes has already
been established. Tt is assumed therefore that
the eritical coupling modes do not change with the
inclusion of acrodynamic damping and that only
the magnitude of the eritical A is affected.

‘ 1
B 41 e c/! R B
——— 5000 -
i L N R A D I 3125 ] _
————— 246.9
No-flutter region
| S 4 | | — | 4 — . — | |
\\\
3___A_ — [N G VO R p L
Py - S T R T — B S S
Flutter region
I . : . IR B I R A A
l JRN— _— B N - J G —1 e i — —
0 | 2 3 4 5 6

. e t
TFigure 7.— Variation of flutter parameter " (

2

=5)
“.8

A\ r\? . c .
- with ( for various values of — with
q Wy, 8 t

( ! )':0 and - 10.6X 107 psi.
hy
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The determinant of the coefficients (which are
now complex) for the two-term Gulerkin approxi-
mation reduces to

1 1
(a5t B-*)f W —Af W a0 5 I
— g1
=0
1 1
A I‘ u‘m’ 4 u',’,_ S f[f ((Xt.,. A + R ‘) [‘ uff,,' 4 ([E E
=1 o —1
(43)

where 3 is now complex and is given by equation
(13) and w, g and w,_ 4 are the general vibration

2
modes for (L) #=0(),
ho

For =, the first antisymmetrical (rigid-body
torsional, m=0) and the first symmetrical chord-
wise (n=1) modes should be used in equation (43).

and

ol S
K= S5

Xy, 8 am, A

Qpy, A coth o, 4 3 —1

‘”(h)

+ Xn 8

4
Xm, A

\

4 tan? @, s—tanh? a, s+2 +

L

In order to arrive at numerical results of the
effects of aerodynamic damping on the flutter
parameter A in the present investigation, the data
from the flutter failures of the multiweb-wing
structures were used. The pertinent parameters
used in some of these tests are tabulated below:

"=312.5

N2
;f;) —0.0187

Le—0.0001453

F=10.6 10" psi

AM=3.0

4
I 1 T Q4 COth Ay, A
B PR

For k=0 the first antisymmetrical mode is zero
and uncouples from the solution; the second anti-
symmetrical (m=1) and the first symmetrical
chordwise (n=1) modes should be used in this case.

If B*is complex and « is considered real, expand-
ing and simplifying equation (43) and equating
the coefficients of both the real and imaginary
parts to zero yields the following expression for A,

— l 4 4
A ‘E(\KI [‘q(a . S+am‘ A)

Fn¥at stad, )P 128K (o} s—ad 0 (44)
where
1<P) Pa .
p==(- 45
2N/ pya1—1 (45)
RN

1 h]
P48 (/LQ') +
4 3\

T |

The results obtained by using the tabulated data
o 1\?
indicate that for k=0 and (;;) =0(a, 5=4.591;
ARY

o 4=3.927), the effect of aerodynamic damping
increases A, by only 0.3 percent. If the actual

N 2
(/f) value of 0.0187 is used in place of the
Q.

. . SN
approximation, (}) =0, the results are not al-
ey,

tered; the increase in A, is still only of the order
of 0.3 percent.

2
YWhen k== « and (,f) <=0 (e1.s=4.591; ag 4=T7),
Y

the effect of aerodynamic damping on A, is still
negligible, the value of A,, being increased by only
0.2 pereent. A greater effect \\0111(1 be realized in
these limiting cases, however, if the ¢/t ratios
increased, as can be seen from the density-ratio
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factor 7 in equation (45). Note that the eflects

of damping have been studied only for the limiting

cases of k=0 and k=w. Ttisnevertheless believed

that the conclusions based on these cases are

applicable for finite values of k except in the
g 2

! . wr o -

questionable region of( i) ~0.35, where flutter
W, 8

appears 1o occur for negligible air flow.

APPLICATION OF METHOD

The previous sections discussed the flutter be-
havior of an idealized structure, The purpose of
the present section is to show how these results
can be used to predict the flutter houndary of the
multiweb wings used in the experimental investi-
gations. In addition, the aceuracy of the predicted
flutter boundary is ascerfained by comparison with
actual flutter data.

TEST SPECIMENS

Tn the experimental investigation into the dy-
namic flutter failures of multiweb-wing structures,
a series of multiweb wings were tested in the pre-
flight jet at the NASA Wallops Station at a Mach
number of 2 (see refs. 1 to 3) and in the Langley
9- by 6-foot thermal structures tunnel at a Mach
number of 3. Specimen identification (see table
TT) conforms with that of the multiweb-wing

(MW) series previously discussed in references 1
to 3. Numbers within parentheses indicate dupli-
cates of the same specimen. For example, MW~
2-(2) identifies the second MW-2 model tested.
These aluminum-alloy (/=10.610° psi) multi-
web models had 5-percent-thick eircular-are air-
foil sections with solid leading and trailing edges
as shown in fignre 1(a). The chord length of 15
of the 18 models tested (models MW-2 and NTW—4)
was 20 inches and the skin thickness ¢, 0.064 inch;
thus the ratio ¢/t for these specimens was 312.5.
These models had a 20-inch span (approximately)
with solid root and tip bulkheads but were free of
internal ribs.  (The models designated MW=2 had
0.25-inch tip bulkheads and those designated
MW-4 had 0.025-inch tip bulkheads.) The pa-

1\? . .
rameter <h > was 0.0187 and the wing aspect ratio
0

slightly over 1.0.

The last three multiweb models listed in table 1T
(designated MW-1-(2), MW-23, and MW-24) arc
presented in order to compare the theoretical flut-
ter boundary with multiweb models of different
chord length and skin thickness from those of
models MW-2 and MW-4. The ratio ¢/t of these
multiweb models, however, is quite similar to that
of models MW=2 and MW-4 (¢/t=320 to¢/t=312.5
for MW=2-(4)). Model MW-1-(2) (from ref. 2)

TABLE TT—AERODYNAMIC TEST CONDITIONS

[p=0.000259 slug/cu in.]

Mach Stagnation Velocity, Air density, Dynamice
Model number | temperature, U fos lp, slugsfen ft| pressure, g, Flutter References
°F Ih/sq in.
MW-2-(2) 1.99 89 1, 700 0. 003610 36. 40 Yes 1
MW-2-(2) 1. 99 ' 540 2, 300 . 002290 42,00 Yes 1
MW-2-(2) 1. 99 503 2, 260 . 002320 11.10 Yes 1
MW-2-(2) 1. 99 517 2, 280 002300 41. 50 Yes 1
AMW-2-(2) 1. 99 474 2, 230 ! . 002380 10. 90 Yoes 1
MW-2-(2) 1. 99 525 2, 200 . 002300 41. 0 Yes 1
MW-2—-(4) 1. 99 I 551 2,314 . 002220 41, 44 Yes 3
MW-1-(3) 1.99 l 531 2, 288 . 002280 11. 58 Yes 3
MW-4-() 3.00 651 2, 028 . 001095 32. 62 Yes TUnpublished data
MW 4-(5) 3.00 l 301 2,423 . 001640 33. 49 No Unpublished data
MW-4-(5) 3. 00 305 2,369 . 001423 32. 62 No TUnpublished data
MW-1-(6) 3. 00 502 2,727 . 001315 33. 80 No Unpublished data
AMW—4-(6) 3. 00 608 2,871 . 001183 33. 89 No Unpublished data
MW-4-(7) 3. 00 673 2, 961 . 001140 34. 71 Yes Tnpublished data
MW-4-(9) 3.00 659 2, 943 . 000786 23. 62 No Unpublished data
MW-1-(2) 1.99 574 2, 350 . 002120 10. 60 Yes 2
MW-23 5. 00 ' G647 2,923 . 001140 33. 82 No TUnpublished data
MW-24 3. 00 656 2, 935 . 001077 32,24 Yes Tupublished data
|
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has a 40-inch chord, skin thickness of 0.125, tip these cross sections can be very accurately ap-
bulkhead of t inch, and a span of 37.50 inches. proximated by the parabolic equation A=hy(1 — %),
Model MW-23 has the same dimensions as MW- Furthermore, the ratio ¢/t of the MW-2 and MW 4
1-(2) except for a tip bulkhead of 0.051 inch and multiweb wings is 312.5 and thus the theoretical
a span of 43.25 inches. Model MW-24 has a flutter boundary presented in figure 5 (for the
60-inch chord, skin thickness of 0.188, tip bulk-  four-term approximation) is the predicted flutter
head of 0.073 inch, and a span of 64.88% inches. boundary for 15 of the experimental models and is
again shownin figure 8. In figure 8 are also shown
the experimental flutter points tabulated in table
(a1,5=4.568) and the wing aspect ratio is approxi- ITI Tor all the MW models. (Note from table 111

2
The ratio (h ) for the three models is 0.0178
0

mately 1.0. and fig. 8 that some of the flutter points fall in

Tuabulated in table IT are such pertinent param-  such close proximity to each other that they are
eters of the experimental tests of these models as not easily distinguished.) In order to tabulate the
Mach number, stagnation temperature, velocity experimental flutter points the values of the first
and density of the jet stream, and dynamic pres- torsional frequency w, and the first symmetrical
sure. Whether or not flutter occurred is indicated. chordwise frequency w, ¢ must be known. The
The published references from which data were first torsional frequency w, was determined ex-
obtained are listed in casc more information is  perimentally and is listed in the first column of
desired. table ITT.  The constant value of w, ¢ was deter-

mined from equation (24) once a5 was found
[rom the general symmetrical frequency equation

2
(given in ref. 4 for any value of (lzi) ) to be 4.566.
!

EXPERIMENTAL RESULTS

Although all the multiweb wings had 5-percent-
thick circular-arc cross sections, the curvature of

- - F

| © No fiutter
o Flutter

SN B % S - - . _—

1.0

No-flutter region

Flutter region

| S S —_

0 I 2 3 4 S

>
(w' 5

Frerre 8. Comparison of theoretical flutter boundary with experimental data, cft=2312.5.
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TABLE ITI.—VIBRATION CHARACTERISTICS FOR FLUTTER SPECIMENS
. [p =0.000259 stug/eu in.]

—
Model wr, OXP. T ind &, Ibfin. ( @r )2 | ,,!,(_Ff)"’
w8 C q
MW-2-(2) 139 98. 135 92, 76 1. 3824 0. 2542
MW-2-(2) 130 98. 135 92, 76 1. 3824 . 2423
MW-2-(2) 139 98. 135 092. 76 1. 3824 L2441
MW-2-(2) 139 98. 135 92. 76 1. 3824 2433
MW-2-(2) 139 98. 135 92. 76 1. 3824 L2445
MW-2-(2) 139 98. 135 92. 76 1. 3824 2427
MW-2-(4) 147 98, 135 103. 77 1. 5465 2434
MW-4-(3) 149 08. 135 111.39 1. 6600 . 2431
MW-4-(4) 145 98, 135 105. 49 1. 5721 L3111
MW-4-(5) 142 98. 135 101. 17 1. 5077 . 3084
MW-4-(5) 142 98. 135 101. 17 1. 5077 L3111
MW-4-(6) 143 98. 135 102. 60 1. 5290 . 3072
MW-1-(6) 143 08, 135 102. 60 1. 5200 . 3072
MW-4-(7) 144 98. 135 104. 04 1. 5505 . 3047
MW-4-(9) 144 98. 135 104. 04 1. 5505 . 3465
MW-1-(2) 74 1737. 01 121. 62 1. 0428 . 2393
MW-23 76 1525. 53 112. 62 I 7990 . 3002
MW-24 54 7798. 21 120, 17 2. 0468 . 3058

The spring constants k were computed from the
first torsional frequency by the well-known rela-
tion

K
L2 AT s
wr ——p[p (41)

where K, is the torsional spring constant and 7,
is the polar moment of inertia per unit length in
the spanwise direction. From equation (40)

2
()

> P
p=2er el (48)

4

Thus

As can be seen from ficure 8 the predicted
flutter boundary and the experimental flutter
points agree quite well. Some of the experi-
mental no-flutter points do fall slightly below the
flutter boundary in the flutter region, but it is be-
lieved that this may be duc to the omission of
temperature considerations in  the calculated
flutter boundary. The heated air of the test fa-
cilities produces a temperature gradient between
the skin and webs of the multiweb model inducing
thermal stresses. No attempt has been made to
include these thermal stresses in the present anal-
ysis.  (The inclusion of thermal effects would

necessitate applying another set of elastic re-
straints horizontally, at the leading and trailing
edges of the wing cross section, fig. 1(b), since the
edges are assumed to remain stationary in the
present analysis.) However, the magnitude of
the effect of these thermal stresses on the flutter
behavior of the multiweb wings is not too evident
from a comparison of the experimental data and
the theoretically predicted flutter boundary.

CONCLUDING REMARKS

The flutter characteristics determined from an
idealized model have been used successfully to
predict camber or cross-sectional flutter behavior
of actual multiweb and monocoque wings of low
aspect ratio.  The use of modified piston theory
for the air loads in the flutter analysis yielded
flutter Tesults thal agreed well with existing ex-
perimental data.  An approximate threc- and four-
term Gulerkin procedure utilizing the exact modes
and frequencies of the vibrational analysis of these
multiweb wings was employed to establish the
flutter boundary. The correlation between this
approximate solution and an exaet solution for the
specific case of simply supported end constraints
indicated that the inclusion of more terms in the
approximate modal solution was not necessary,
the three- and four-term approximations being
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within a few percent of the exact. This ngree-
ment was also borne out hy the rapid convergence
of the Galerkin procedures for the three- and four-
term approximations.

The existence of curvature in a wing cross see-
tion was shown to have an appreciable effect on
the flutter eriterion.  Onee the eurvature is pres-
ent, however, variations in the degree of curvature
were shown to have little effect on the flutter
boundary.  The effects of aerodynamic damping
on the flutter boundary were investigated for the
limiting cases of k=0 and k= o and found to he

negligible.

The influence of thermal stresses arising in the
multiweb-wing structure due to heating of the
skins by the hot-air jet have not been considered
in the present analysis, but a comparison of the
experimental data with the theoretically predicted
flutter boundary did not indicate the resulis to
be unduly affected by thermal stresses,

LaNcriEy ResparcH CENTER,
NATIONAL AERONATUTICS AND SPACE ADMINISTRATION,
Laxarey Starion, Hameron, Va., Adugust 23, 1962,



APPENDIX

EXACT SOLUTION OF DIFFERENTIAL EQUATION FOR k= =« AND AERODYNAMIC DAMPING NEGLECTED

An exact solution to equation (8), as given in
the text, can be obtained directly by neglecting
acrodynamic damping. In a manner similar to
that employed by Hedgepetlh in reference 6, an
exact solution is obtained for the limiting case of
pin-ended constraints (k=) at the leading and
trailing edges of the cross section. With acro-
dynamiec damping neglected, B* reduces to —a* and
equation (8) can be written as

: 2
w' - Aw —atw= % (A1)
Furthermore, the origin of the coordinate axes is
moved to the leading edge of the cross section both
to aid in a later comparison with the infinite-
aspect-ratio simply supporied plate and to simplhfy
somewhat the form of the solution to equation

(A1). Thus
y=E+1 (AZ)

and the expression for the hall-depth A can be
written as

bty [1—(¥—1)7] (A3)

The associated boundary
ended constraints become

conditions for the pin-

w(0)=w(2)=0 (Ad)
T T .
T vl == (AB)

The normal midplane force X is considered con-
stant and equal to the average midplane force as
given by equation (135) or, since w(0)=w(2)==0,
simply reduces to

q 2
>\:4]'(‘,’2ﬁ ! f wiy

g0

(AG)

The solution to equation (A1) can be written in
the form

Y, ~
_ ’[;3;,‘—{—2 1,,(; (AT)

where m, (for p=1 to 4) are the roots of the
auxiliary equation

m+Am—at=0 (AS)

Since w is considered real, o' is always positive and
A is always positive by definition; hence, m has
one possible real positive root and one possible
real negative root and a pair of complex roots,
or two pairs of complex roots.

Let
my=0-+¢
mgjef(ﬁ
my=y 15 (A9
my=vy—16

In order for these rools (ecqs. (A9)) to satisfy
equation (AS), the following equations must be
true

m;+my+my+my=0 (A10)
(my+my) (ms+my) =0 (A11)

myma(my+mg) +FmamsOmy 4+ my) =—A (A12)

mym,+mym,+

mymymsm,—=—a*

(A13)

By substitution of the relations for m,, m,, m;,, and
m, given in equations (A9) into equations (A10)
to (A13) the following relationships between v, 8, ¢,
and 8 are Tound:

y=—0 (A14)
5= ¢+ 267 (A15)
20(¢?+5%) = —2A (416)

6 —¢*) (6°+ 6%) = — o (A17)

By inspection of equations (A14) to (A17) it can

be seen that
620
16 >6]

while from equation (A17) the possibility of two

pairs of complex roots is eliminated. Substitu-

tion of equation (A15) into equations (A16) and
19

(A18)
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(A17) vields, after some algebraic manipulation,

¢2=—92—i—‘0 (A19)
and
A2
96+ w6 6\4 0 (A20)

In equation (A20), 62 has one positive real root
and two conjugate complex roots. However,
interest 1s centered in the case where 6 is real and
negative {eq. (A18)); hence 87 is real and positive.

can be writien as

(‘))\h,,('

ET +e®(C, cosh ¢+, sinh ¢y)

+e % (Cs cos 8y+Cysin &)  (A22)

Substitution of the general solution (given by eq.
(A22)) into the pin-ended boundary conditions
(eqs. (A4) and (A5)) vields the following set of
equations for the coefficients ), Cy, (%, and y:

Subst%tution fOl“ ¢? from equation (A19) into Gi\h,oc;—f-chCs:O (123)
equation (A15) yields atlit
, A 6Mhe? 2
sl=g2 — 1 (A21) O —— -+ (Ce® cosh 2¢+ (e sinh 2¢
Therefore, for the flutter analysis, equation (A7) 4+ Cse™% cos 25+ Che sin 256=0 (A24)
Cll (621 ¢?)e2? cosh 2¢+20¢¢% sinh 2¢]-- C2[20¢¢? cosh 2¢ 1 (62 + ¢%)e* sinh 2¢]
+ C(02— 8% e~ cos 26-1-206¢ 2 sin 28] — C,[260¢~%% cos 26— (f2—6%) e~ 2% sin 26]=0 (A26)

where X is writlen as

0

)\:— 72776/[,“7(’727 ('1
) L

26 (s}«ng.u—
'*“L o)

For a nontrivial solution the determinant of
the coefficients must equal zero. Substitution of X
given by equation (A27) into equations (A23) and
(A24) and subsequent simplification yields the
determinant of the coefficients in terms of 8, ¢, 8,

(;j—)? o', and A as shown in table T.
di}

1 ,_ (( ‘osh ‘)qb—¢ sinh 9¢)— 1‘[
hp —+ +0

et (smh ‘7¢—~ cosh "q&)—{— -I

) =]

— (——cos 95—|— sin 96)+1 re % (—sin '26—é cos 25>+6
. ] 0 _
—_—— e (A27)

| )

Note that if the hall-depth & is equal to zero
everywhere (Ay=0), the parabolic airfoil reduces
to a flat beam and a in table T becomes zero. This
modified determinant, when expanded, will yield
an expression which is identical to that for the
infinite-aspect-ratio simply supported plate solved
exactly in reference 6.
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